3.14.13 \(\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx\)

Optimal. Leaf size=47 \[ -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {b c-a d}}\right )}{\sqrt {b} \sqrt {b c-a d}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {63, 208} \begin {gather*} -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {b c-a d}}\right )}{\sqrt {b} \sqrt {b c-a d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x)*Sqrt[c + d*x]),x]

[Out]

(-2*ArcTanh[(Sqrt[b]*Sqrt[c + d*x])/Sqrt[b*c - a*d]])/(Sqrt[b]*Sqrt[b*c - a*d])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin {align*} \int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx &=\frac {2 \operatorname {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x}\right )}{d}\\ &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {b c-a d}}\right )}{\sqrt {b} \sqrt {b c-a d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 47, normalized size = 1.00 \begin {gather*} -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {b c-a d}}\right )}{\sqrt {b} \sqrt {b c-a d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x)*Sqrt[c + d*x]),x]

[Out]

(-2*ArcTanh[(Sqrt[b]*Sqrt[c + d*x])/Sqrt[b*c - a*d]])/(Sqrt[b]*Sqrt[b*c - a*d])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.05, size = 57, normalized size = 1.21 \begin {gather*} -\frac {2 \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x} \sqrt {a d-b c}}{b c-a d}\right )}{\sqrt {b} \sqrt {a d-b c}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/((a + b*x)*Sqrt[c + d*x]),x]

[Out]

(-2*ArcTan[(Sqrt[b]*Sqrt[-(b*c) + a*d]*Sqrt[c + d*x])/(b*c - a*d)])/(Sqrt[b]*Sqrt[-(b*c) + a*d])

________________________________________________________________________________________

fricas [A]  time = 1.20, size = 119, normalized size = 2.53 \begin {gather*} \left [\frac {\log \left (\frac {b d x + 2 \, b c - a d - 2 \, \sqrt {b^{2} c - a b d} \sqrt {d x + c}}{b x + a}\right )}{\sqrt {b^{2} c - a b d}}, \frac {2 \, \sqrt {-b^{2} c + a b d} \arctan \left (\frac {\sqrt {-b^{2} c + a b d} \sqrt {d x + c}}{b d x + b c}\right )}{b^{2} c - a b d}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[log((b*d*x + 2*b*c - a*d - 2*sqrt(b^2*c - a*b*d)*sqrt(d*x + c))/(b*x + a))/sqrt(b^2*c - a*b*d), 2*sqrt(-b^2*c
 + a*b*d)*arctan(sqrt(-b^2*c + a*b*d)*sqrt(d*x + c)/(b*d*x + b*c))/(b^2*c - a*b*d)]

________________________________________________________________________________________

giac [A]  time = 0.88, size = 38, normalized size = 0.81 \begin {gather*} \frac {2 \, \arctan \left (\frac {\sqrt {d x + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{\sqrt {-b^{2} c + a b d}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)^(1/2),x, algorithm="giac")

[Out]

2*arctan(sqrt(d*x + c)*b/sqrt(-b^2*c + a*b*d))/sqrt(-b^2*c + a*b*d)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 37, normalized size = 0.79 \begin {gather*} \frac {2 \arctan \left (\frac {\sqrt {d x +c}\, b}{\sqrt {\left (a d -b c \right ) b}}\right )}{\sqrt {\left (a d -b c \right ) b}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x+a)/(d*x+c)^(1/2),x)

[Out]

2/((a*d-b*c)*b)^(1/2)*arctan((d*x+c)^(1/2)/((a*d-b*c)*b)^(1/2)*b)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c positive or negative?

________________________________________________________________________________________

mupad [B]  time = 0.27, size = 38, normalized size = 0.81 \begin {gather*} \frac {2\,\mathrm {atan}\left (\frac {b\,\sqrt {c+d\,x}}{\sqrt {a\,b\,d-b^2\,c}}\right )}{\sqrt {a\,b\,d-b^2\,c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x)*(c + d*x)^(1/2)),x)

[Out]

(2*atan((b*(c + d*x)^(1/2))/(a*b*d - b^2*c)^(1/2)))/(a*b*d - b^2*c)^(1/2)

________________________________________________________________________________________

sympy [A]  time = 5.41, size = 44, normalized size = 0.94 \begin {gather*} - \frac {2 \operatorname {atan}{\left (\frac {1}{\sqrt {\frac {b}{a d - b c}} \sqrt {c + d x}} \right )}}{\sqrt {\frac {b}{a d - b c}} \left (a d - b c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)**(1/2),x)

[Out]

-2*atan(1/(sqrt(b/(a*d - b*c))*sqrt(c + d*x)))/(sqrt(b/(a*d - b*c))*(a*d - b*c))

________________________________________________________________________________________